1
  2
  3
  4
  5
  6
  7
  8
  9
 10
 11
 12
 13
 14
 15
 16
 17
 18
 19
 20
 21
 22
 23
 24
 25
 26
 27
 28
 29
 30
 31
 32
 33
 34
 35
 36
 37
 38
 39
 40
 41
 42
 43
 44
 45
 46
 47
 48
 49
 50
 51
 52
 53
 54
 55
 56
 57
 58
 59
 60
 61
 62
 63
 64
 65
 66
 67
 68
 69
 70
 71
 72
 73
 74
 75
 76
 77
 78
 79
 80
 81
 82
 83
 84
 85
 86
 87
 88
 89
 90
 91
 92
 93
 94
 95
 96
 97
 98
 99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
use std::mem::MaybeUninit;
use std::sync::atomic::AtomicU64;
use std::sync::atomic::Ordering;
use std::{alloc, ptr, sync};

/// Reference count used for global constants created by codegen
pub const GLOBAL_CONSTANT_REFCOUNT: u64 = std::u64::MAX;

const TRIE_RADIX: u32 = 5;
pub const NODE_SIZE: usize = 1 << TRIE_RADIX;
const LEVEL_MASK: usize = (1 << TRIE_RADIX) - 1;

#[cfg(test)]
use std::cell::RefCell;

#[cfg(test)]
thread_local! {
    static ALLOCATED_BRANCHES: RefCell<isize> = RefCell::new(0);
}

#[cfg(test)]
thread_local! {
    static ALLOCATED_LEAVES: RefCell<isize> = RefCell::new(0);
}

#[repr(C)]
pub struct Vector<T>
where
    T: Copy,
{
    size: u64,
    root: *const Node<T>,
    tail: *const Node<T>,
}

impl<T> Vector<T>
where
    T: Copy,
{
    pub fn new(values: impl ExactSizeIterator<Item = T>) -> Self {
        let empty_vec = Vector {
            size: 0,
            root: std::ptr::null(),
            tail: std::ptr::null(),
        };

        empty_vec.extend(values)
    }

    pub fn len(&self) -> usize {
        self.size as usize
    }

    pub fn is_empty(&self) -> bool {
        self.len() == 0
    }

    /// Pushes a new leaf containing `added_elements` additional elements
    fn push_leaf(&self, leaf: *const Node<T>, added_elements: u64) -> Vector<T> {
        let new_size = self.size + added_elements;
        debug_assert!(new_size & (LEVEL_MASK as u64) == 0);

        let new_root = match unsafe { self.root.as_ref() } {
            None => {
                // We're the first root node
                leaf
            }
            Some(old_root) => {
                let old_depth = Self::trie_depth(self.trie_size());
                let new_depth = Self::trie_depth(self.trie_size() + NODE_SIZE);

                if old_depth == new_depth {
                    old_root.push_leaf(old_depth, new_size as usize - 1, leaf)
                } else {
                    // Need to add a new level
                    let mut root_children: [*const Node<T>; NODE_SIZE] = [ptr::null(); NODE_SIZE];
                    root_children[0] = Node::take_ptr_ref(self.root);
                    root_children[1] = Node::new_chain(leaf, old_depth);

                    Node::new_branch(root_children)
                }
            }
        };

        Self {
            size: new_size,
            root: new_root,
            tail: ptr::null(),
        }
    }

    pub fn get(&self, index: usize) -> Option<T> {
        if index >= self.len() {
            return None;
        }

        let leaf_node = self.get_leaf(index);
        unsafe { Some((*leaf_node).elements.leaf[index & LEVEL_MASK].assume_init()) }
    }

    pub fn take(&self, count: usize) -> Vector<T> {
        let new_len = std::cmp::min(count, self.len());
        if new_len == self.len() {
            return self.clone();
        }

        let new_trie_size = Self::trie_size_for_len(new_len);
        let new_root = if new_trie_size > 0 {
            let old_depth = Self::trie_depth(self.trie_size());
            let new_depth = Self::trie_depth(new_trie_size);

            // Drill down until we find our new root
            let new_root = (new_depth..old_depth)
                .fold(self.root, |root, _| unsafe { (*root).elements.branch[0] });

            Node::take_ptr_ref(new_root)
        } else {
            ptr::null()
        };

        let new_tail_size = Self::tail_size_for_len(new_len);
        let new_tail = if new_tail_size > 0 {
            Node::take_ptr_ref(self.get_leaf(new_trie_size))
        } else {
            ptr::null()
        };

        Self {
            size: new_len as u64,
            root: new_root,
            tail: new_tail,
        }
    }

    fn get_leaf(&self, index: usize) -> *const Node<T> {
        if index >= self.tail_offset() {
            self.tail
        } else {
            let depth = Self::trie_depth(self.trie_size());
            unsafe { (&*self.root).get_leaf(depth, index) }
        }
    }

    pub fn assoc(&self, index: usize, value: T) -> Vector<T> {
        if index >= self.len() {
            panic!("element {} of out bounds", index);
        }

        if index >= self.tail_offset() {
            let mut new_elements = [MaybeUninit::uninit(); NODE_SIZE];

            // Copy the previous leaf elements
            new_elements[..self.tail_size()]
                .copy_from_slice(unsafe { &(*self.tail).elements.leaf[..self.tail_size()] });

            // Overwrite the element
            new_elements[index - self.tail_offset()] = MaybeUninit::new(value);

            return Self {
                size: self.size,
                root: Node::take_ptr_ref(self.root),
                tail: Node::new_leaf(new_elements),
            };
        }

        let depth = Self::trie_depth(self.trie_size());
        let new_root = unsafe { (&*self.root).assoc_value(depth, index, value) };

        Self {
            size: self.size,
            root: new_root,
            tail: Node::take_ptr_ref(self.tail),
        }
    }

    pub fn iter(&self) -> impl ExactSizeIterator<Item = T> + '_ {
        Iter {
            vec: self,
            index: 0,
            current_leaf: self.get_leaf(0),
        }
    }

    pub fn extend(&self, mut values: impl ExactSizeIterator<Item = T>) -> Vector<T> {
        // This is a three step process:
        //
        // 1. Fill the existing tail with values
        // 2. Push whole NODE_SIZE leaves while enough values remain
        // 3. Place the rest of the values in the tail
        //
        // We can run out of values at any phase and return the finished vector

        if values.len() == 0 {
            return self.clone();
        }

        let mut vec_acc = if let Some(tail_ref) = unsafe { self.tail.as_ref() } {
            let old_tail_size = self.tail_size();
            let mut tail_elements = [MaybeUninit::uninit(); NODE_SIZE];

            unsafe {
                tail_elements[..old_tail_size]
                    .copy_from_slice(&tail_ref.elements.leaf[..old_tail_size]);
            }

            let fill_size = std::cmp::min(NODE_SIZE - old_tail_size, values.len());
            let new_tail_size = old_tail_size + fill_size;

            for tail_element in tail_elements.iter_mut().skip(old_tail_size).take(fill_size) {
                *tail_element = MaybeUninit::new(values.next().unwrap());
            }

            let new_leaf = Node::new_leaf(tail_elements);

            if new_tail_size != NODE_SIZE {
                // We only affected the tail
                return Self {
                    size: self.size + (fill_size as u64),
                    root: Node::take_ptr_ref(self.root),
                    tail: new_leaf,
                };
            }

            self.push_leaf(new_leaf, fill_size as u64)
        } else {
            self.clone()
        };

        while values.len() >= NODE_SIZE {
            let mut trie_elements = [MaybeUninit::uninit(); NODE_SIZE];
            for trie_element in &mut trie_elements {
                *trie_element = MaybeUninit::new(values.next().unwrap());
            }

            vec_acc = vec_acc.push_leaf(Node::new_leaf(trie_elements), NODE_SIZE as u64)
        }

        let tail_size = values.len();
        if tail_size > 0 {
            let mut tail_elements = [MaybeUninit::uninit(); NODE_SIZE];
            for (tail_element, value) in tail_elements.iter_mut().zip(values) {
                *tail_element = MaybeUninit::new(value);
            }

            vec_acc.size += tail_size as u64;
            vec_acc.tail = Node::new_leaf(tail_elements);
        }

        vec_acc
    }

    /// Visits each mutable element of the array
    ///
    /// This skips global constants
    pub(crate) fn visit_mut_elements<F>(&mut self, visitor: &mut F)
    where
        F: FnMut(&mut T),
    {
        unsafe {
            if let Some(tail_ref) = (self.tail as *mut Node<T>).as_mut() {
                tail_ref.visit_mut_elements(0, self.tail_size(), visitor);
            }
        }

        unsafe {
            if let Some(root_ref) = (self.root as *mut Node<T>).as_mut() {
                let trie_size = self.trie_size();
                root_ref.visit_mut_elements(Self::trie_depth(trie_size), trie_size, visitor);
            }
        }
    }

    /// Size of the trie portion of the `Vector`
    ///
    /// This is always a multiple of `NODE_SIZE`
    fn trie_size(&self) -> usize {
        Self::trie_size_for_len(self.len())
    }

    fn trie_size_for_len(len: usize) -> usize {
        len - Self::tail_size_for_len(len)
    }

    /// Size of the tail portion of the `Vector`
    ///
    /// This is always less than `NODE_SIZE`
    fn tail_size(&self) -> usize {
        Self::tail_size_for_len(self.len())
    }

    fn tail_size_for_len(len: usize) -> usize {
        len % NODE_SIZE
    }

    /// Index of the first element in the tail portion
    fn tail_offset(&self) -> usize {
        self.len() - self.tail_size()
    }

    /// Returns the trie depth for trie of the given size
    fn trie_depth(trie_size: usize) -> u32 {
        if trie_size <= 1 {
            // The root is the only node
            return 0;
        }

        (63 - (trie_size as u64 - 1).leading_zeros()) / TRIE_RADIX
    }
}

impl<T> Drop for Vector<T>
where
    T: Copy,
{
    fn drop(&mut self) {
        unsafe {
            Node::release_ptr_ref(self.root, Self::trie_depth(self.trie_size()));
            Node::release_ptr_ref(self.tail, 0);
        }
    }
}

union NodeElements<T>
where
    T: Copy,
{
    leaf: [MaybeUninit<T>; NODE_SIZE],
    branch: [*const Node<T>; NODE_SIZE],
}

#[repr(C)]
struct Node<T>
where
    T: Copy,
{
    ref_count: AtomicU64,
    elements: NodeElements<T>,
}

impl<T> Node<T>
where
    T: Copy,
{
    fn new_leaf(elements: [MaybeUninit<T>; NODE_SIZE]) -> *const Node<T> {
        #[cfg(test)]
        ALLOCATED_LEAVES.with(|counter| *counter.borrow_mut() += 1);

        let layout = alloc::Layout::new::<Self>();

        unsafe {
            let node = alloc::alloc(layout) as *mut Node<T>;

            (*node).ref_count = AtomicU64::new(1);
            (*node).elements.leaf = elements;

            node
        }
    }

    fn new_branch(elements: [*const Node<T>; NODE_SIZE]) -> *const Node<T> {
        #[cfg(test)]
        ALLOCATED_BRANCHES.with(|counter| *counter.borrow_mut() += 1);

        let layout = alloc::Layout::new::<Self>();
        debug_assert!(!elements[0].is_null());

        unsafe {
            let node = alloc::alloc(layout) as *mut Node<T>;

            (*node).ref_count = AtomicU64::new(1);
            (*node).elements.branch = elements;

            node
        }
    }

    fn new_chain(leaf_node: *const Node<T>, remaining_depth: u32) -> *const Node<T> {
        if remaining_depth == 0 {
            return leaf_node;
        }

        // Create a one level intermediate node with a single branch
        let rest_tail = Self::new_chain(leaf_node, remaining_depth - 1);

        let mut intermediate_elements = [ptr::null::<Node<T>>(); NODE_SIZE];
        intermediate_elements[0] = rest_tail;

        Self::new_branch(intermediate_elements)
    }

    fn get_leaf(&self, remaining_depth: u32, index: usize) -> *const Node<T> {
        if remaining_depth == 0 {
            return self as *const Node<T>;
        }

        let level_radix = TRIE_RADIX * remaining_depth;
        let branch_index = (index >> level_radix) & LEVEL_MASK;

        unsafe { (&*self.elements.branch[branch_index]).get_leaf(remaining_depth - 1, index) }
    }

    fn assoc_value(&self, remaining_depth: u32, index: usize, value: T) -> *const Node<T> {
        if remaining_depth == 0 {
            // Replace the leaf value
            let mut new_elements = unsafe { self.elements.leaf };
            new_elements[index & LEVEL_MASK] = MaybeUninit::new(value);

            return Self::new_leaf(new_elements);
        }

        let level_radix = TRIE_RADIX * remaining_depth;
        let branch_index = (index >> level_radix) & LEVEL_MASK;

        // Replace the branch value
        let new_subtree = unsafe {
            (&*self.elements.branch[branch_index]).assoc_value(remaining_depth - 1, index, value)
        };

        let mut new_elements: [*const Node<T>; NODE_SIZE] = [ptr::null(); NODE_SIZE];

        for (i, new_element) in new_elements.iter_mut().enumerate() {
            unsafe {
                *new_element = if i == branch_index {
                    new_subtree
                } else {
                    Node::take_ptr_ref(self.elements.branch[i])
                };
            }
        }

        Self::new_branch(new_elements)
    }

    fn push_leaf(
        &self,
        remaining_depth: u32,
        last_index: usize,
        leaf: *const Node<T>,
    ) -> *const Node<T> {
        if remaining_depth == 0 {
            return leaf;
        }

        let level_radix = TRIE_RADIX * remaining_depth;
        let branch_index = (last_index >> level_radix) & LEVEL_MASK;

        // Replace the branch value
        let new_subtree = unsafe {
            match self.elements.branch[branch_index].as_ref() {
                Some(branch) => branch.push_leaf(remaining_depth - 1, last_index, leaf),
                None => Self::new_chain(leaf, remaining_depth - 1),
            }
        };

        let mut new_elements: [*const Node<T>; NODE_SIZE] = [ptr::null(); NODE_SIZE];

        for (new_element, old_element) in new_elements
            .iter_mut()
            .zip(unsafe { self.elements.branch }.iter())
            .take(branch_index)
        {
            *new_element = Node::take_ptr_ref(*old_element)
        }

        new_elements[branch_index] = new_subtree;
        Self::new_branch(new_elements)
    }

    fn is_global_constant(&self) -> bool {
        self.ref_count.load(Ordering::Relaxed) == GLOBAL_CONSTANT_REFCOUNT
    }

    fn take_ptr_ref(self_ptr: *const Node<T>) -> *const Node<T> {
        if let Some(self_ref) = unsafe { self_ptr.as_ref() } {
            if !self_ref.is_global_constant() {
                self_ref.ref_count.fetch_add(1, Ordering::Relaxed);
            }

            self_ptr
        } else {
            ptr::null()
        }
    }

    /// Atomically releases a reference to the node
    unsafe fn release_ptr_ref(self_ptr: *const Node<T>, depth: u32) {
        let self_ref = if let Some(self_ref) = self_ptr.as_ref() {
            self_ref
        } else {
            return;
        };

        if self_ref.is_global_constant() {
            return;
        }

        let should_destroy = self_ref.ref_count.fetch_sub(1, Ordering::Release) == 1;

        if should_destroy {
            sync::atomic::fence(Ordering::Acquire);

            if depth > 0 {
                for i in 0..NODE_SIZE {
                    Self::release_ptr_ref(self_ref.elements.branch[i], depth - 1);
                }

                #[cfg(test)]
                ALLOCATED_BRANCHES.with(|counter| *counter.borrow_mut() -= 1);
            } else {
                #[cfg(test)]
                ALLOCATED_LEAVES.with(|counter| *counter.borrow_mut() -= 1);
            }

            alloc::dealloc(
                self_ref as *const Self as *mut u8,
                alloc::Layout::new::<Self>(),
            );
        }
    }

    /// Visits up to `remaining_elements` mutable elements, returning the new remaining count
    fn visit_mut_elements<F>(
        &mut self,
        remaining_depth: u32,
        mut remaining_elements: usize,
        visitor: &mut F,
    ) -> usize
    where
        F: FnMut(&mut T),
    {
        if self.is_global_constant() {
            // We're a global constant; skip us
            return remaining_elements.saturating_sub(NODE_SIZE << (remaining_depth * TRIE_RADIX));
        }

        if remaining_depth == 0 {
            let leaf_size = std::cmp::min(remaining_elements, NODE_SIZE);

            unsafe {
                for element in self.elements.leaf.iter_mut().take(leaf_size) {
                    visitor(&mut (*element.as_mut_ptr()));
                }
            }

            return remaining_elements - leaf_size;
        }

        for branch in unsafe { self.elements.branch.iter() } {
            unsafe {
                remaining_elements = (&mut *(*branch as *mut Node<T>)).visit_mut_elements(
                    remaining_depth - 1,
                    remaining_elements,
                    visitor,
                );
            }

            if remaining_elements == 0 {
                return 0;
            }
        }

        remaining_elements
    }
}

struct Iter<'a, T>
where
    T: Copy,
{
    vec: &'a Vector<T>,
    index: usize,
    current_leaf: *const Node<T>,
}

impl<'a, T> Iterator for Iter<'a, T>
where
    T: Copy,
{
    type Item = T;

    fn next(&mut self) -> Option<T> {
        if self.index >= self.vec.len() {
            return None;
        }

        let item =
            unsafe { (*self.current_leaf).elements.leaf[self.index & LEVEL_MASK].assume_init() };

        self.index += 1;
        if self.index & LEVEL_MASK == 0 {
            // Lookup the next node
            self.current_leaf = self.vec.get_leaf(self.index);
        }

        Some(item)
    }

    fn size_hint(&self) -> (usize, Option<usize>) {
        let exact_size = self.vec.size as usize - self.index;

        (exact_size, Some(exact_size))
    }
}

impl<'a, T> ExactSizeIterator for Iter<'a, T> where T: Copy {}

impl<T> Clone for Vector<T>
where
    T: Copy,
{
    fn clone(&self) -> Self {
        Vector {
            size: self.size,
            root: Node::take_ptr_ref(self.root),
            tail: Node::take_ptr_ref(self.tail),
        }
    }
}

#[cfg(test)]
mod test {
    use super::*;

    use std::iter;

    fn assert_nodes_deallocated<T>(block: T)
    where
        T: FnOnce(),
    {
        assert_eq!(
            0,
            ALLOCATED_BRANCHES.with(|counter| *counter.borrow()),
            "branches allocated before beginning of test"
        );

        assert_eq!(
            0,
            ALLOCATED_LEAVES.with(|counter| *counter.borrow()),
            "leaves allocated before beginning of test"
        );

        block();

        assert_eq!(
            0,
            ALLOCATED_BRANCHES.with(|counter| *counter.borrow()),
            "branches still allocated after end of test"
        );

        assert_eq!(
            0,
            ALLOCATED_LEAVES.with(|counter| *counter.borrow()),
            "leaves still allocated after end of test"
        );
    }

    #[test]
    fn tail_only_vector() {
        assert_nodes_deallocated(|| {
            let empty_vec = Vector::<i32>::new(iter::empty());

            assert_eq!(0, empty_vec.len());
            assert!(empty_vec.is_empty());

            let one_vec = empty_vec.extend(iter::once(0));

            // Make sure `empty_vec` is still intact
            assert_eq!(0, empty_vec.len());
            assert!(empty_vec.is_empty());
            assert_eq!(None, empty_vec.get(0));

            assert_eq!(1, one_vec.len());
            assert!(!one_vec.is_empty());
            assert_eq!(Some(0), one_vec.get(0));

            // Try modifying the original one item vec
            let mutated_vec = one_vec.assoc(0, 31337);

            assert_eq!(1, mutated_vec.len());
            assert!(!mutated_vec.is_empty());
            assert_eq!(Some(31337), mutated_vec.get(0));
            assert_eq!(Some(0), one_vec.get(0));
        });
    }

    #[test]
    fn extended_one_level_vector() {
        assert_nodes_deallocated(|| {
            const TEST_LEN: usize = 48;

            let mut test_vec = Vector::<usize>::new(iter::empty());

            for i in 0..TEST_LEN {
                assert_eq!(i, test_vec.len());
                test_vec = test_vec.extend(iter::once(i));
            }

            // Check the contents manually
            for i in 0..TEST_LEN {
                assert_eq!(Some(i), test_vec.get(i));
            }

            // Check the contents with an iterator
            {
                let test_iter = test_vec.iter();
                assert_eq!(TEST_LEN, test_iter.len());

                for (actual, expected) in test_vec.iter().enumerate() {
                    assert_eq!(expected, actual);
                }
            }
        })
    }

    #[test]
    fn extended_two_level_vector() {
        assert_nodes_deallocated(|| {
            const TEST_LEN: usize = 128;

            let mut test_vec = Vector::<usize>::new(iter::empty());

            for i in 0..TEST_LEN {
                assert_eq!(i, test_vec.len());
                test_vec = test_vec.extend(iter::once(i));
            }

            // Check the contents manually
            for i in 0..TEST_LEN {
                assert_eq!(Some(i), test_vec.get(i));
            }

            // Check the contents with an iterator
            {
                let test_iter = test_vec.iter();
                assert_eq!(TEST_LEN, test_iter.len());

                for (actual, expected) in test_vec.iter().enumerate() {
                    assert_eq!(expected, actual);
                }
            }

            // Check the contents using take
            for i in (0..TEST_LEN).step_by(3) {
                let head_vec = test_vec.take(i);
                assert_eq!(i, head_vec.len());

                if i > 0 {
                    assert_eq!(Some(0), head_vec.get(0));
                    assert_eq!(Some(i - 1), head_vec.get(i - 1));
                }
            }
        })
    }

    #[test]
    fn initialised_three_level_vector() {
        assert_nodes_deallocated(|| {
            const TEST_LEN: usize = 2087;

            let mut test_vec = Vector::<usize>::new(0..TEST_LEN);
            assert_eq!(TEST_LEN, test_vec.len());

            // Check the contents manually
            for i in 0..TEST_LEN {
                assert_eq!(Some(i), test_vec.get(i));
            }

            // Check the contents with an iterator
            {
                let test_iter = test_vec.iter();
                assert_eq!(TEST_LEN, test_iter.len());

                for (actual, expected) in test_vec.iter().enumerate() {
                    assert_eq!(expected, actual);
                }
            }

            // Manually reverse the vector
            for i in (0..TEST_LEN).rev() {
                test_vec = test_vec.assoc(i, TEST_LEN - i - 1);
            }

            // Make sure it's reversed
            for i in 0..TEST_LEN {
                assert_eq!(Some(TEST_LEN - i - 1), test_vec.get(i));
            }

            // Reverse the vector back by mutable ref
            test_vec.visit_mut_elements(&mut |element| {
                *element = TEST_LEN - *element - 1;
            });

            // Check the contents using take
            for i in (0..TEST_LEN).step_by(7) {
                let head_vec = test_vec.take(i);
                assert_eq!(i, head_vec.len());

                for (actual, expected) in head_vec.iter().enumerate() {
                    assert_eq!(expected, actual);
                }
            }
        })
    }

    #[test]
    fn vector_extend() {
        assert_nodes_deallocated(|| {
            let start_vec = Vector::<usize>::new(1..4);
            let extended_vec = start_vec.extend(4..7);

            let all_values: Vec<usize> = extended_vec.iter().collect();
            assert_eq!(vec![1, 2, 3, 4, 5, 6], all_values);

            let zero_extended_vec = extended_vec.extend(iter::empty());
            assert_eq!(6, zero_extended_vec.len());
        })
    }
}